If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-5n-15=0
a = 3; b = -5; c = -15;
Δ = b2-4ac
Δ = -52-4·3·(-15)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{205}}{2*3}=\frac{5-\sqrt{205}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{205}}{2*3}=\frac{5+\sqrt{205}}{6} $
| s/8+5=15 | | s8+5=15 | | 10x+9=6x-11 | | 18=1.5x+4 | | 9+35=–5y | | 3+p=9(13) | | 7(m+2)-5=1/3(21m+9)-6 | | 3c–8=7 | | -.5x-(.5x+4)+12=17x-6(3x+5/6) | | 2x=183x= | | X=-130+14y | | 2x+-10=110 | | 5(1k+4)=2(2.5k-3)+12 | | 2(c−18)=−26 | | z/7+4=-85 | | k/7+3=15 | | -56.23+y=463.4 | | 41=4d+5 | | 4/12=x/180 | | (11x+11)×21=2310 | | X=-7+240y | | 4x/5+5=-3 | | A=180+360n | | 5(1k+4)=2(2.5k-3) | | x+x+2x+23=-2x-31 | | 6(x-4)+1=-59 | | 3y-27=72 | | X=-240-7y | | 4=(5z+2)+3z | | 4y+27=119 | | 10.12x=110 | | 16b^2-36=0 |